Neural Radiance Field

A novel, data-driven solution to the long-standing problem in computer
graphics of the realistic rendering of virtual worlds.
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Novel View Synthesis & Reconstructions

* Photo-realistic rendering.

* Rasterization / Ray tracing,

* Synthesizing views under camera viewpoint
transformations from one or multiple input
Images.
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Scene Representations

* Specifically defined representations of geometry and material properties.

* A scene consists of one or more objects.
* Surface and volumetric representations.
* Discretized and continuous representations.

* Explicit and implicit representations.



Surface and Volumetric Representations

* Surface representations store property w.r.t. the surface such as colors, normal
vectors or brdf.

* Volumetric representations volumetric properties such as densities, opacities or
occupancies.
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@ Surface is directly indexable -- Forward Rendering {e.g., rasterization)
@ Surface is NOT indexable -~ Ray Casting
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Discretized and Continuous Representations

* For both surface and volumetric representations, there are continuous and
discretized counterparts.

e Discretized | Continuous

Surface Pointclouds, meshes Parametric Surfaces, SDFs
Volumetric Voxels, 3D textures Neural Networks
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@ Surface is directly indexable -- Forward Rendering (e.g., rasterization)
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Explicit and Implicit Representations

* Explicit and implicit representation are meant to surface representations.
 Explicit: y = f(x), i.e. (u,v) » (cos(u) sin(v), sin(u) sin(v), cos(v))

* Images/Textures, Pointclouds, Meshes, Parametric Surface, (Volumetric Representations).
 Implicit: F(x,y) =0 =y =y(x),ie.x*+y*—1=0

* Neural Network, Signed Distance Function/Level Set, Gaussian Mixtures.
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Explicit Continuous Volumetric Representations

* NeRF can be categorized as explicit continuous volumetric representations.

* Why not other representations?

* Explicit v.s. Implicit. (x,0,2,6,0) —>|:||:||:|_> (RGBo)
* Continuous v.s. Discretized. P.,
* Surface v.s. Volume. e

* Why some one says NeRF is implicit representation?
* Embedding.
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Neural Scene Representations

* NeRF can be categorized as neural scene representation.
* DeepSDF (Park et al. CVPR 2019)
* Plenoxels (Yu et al. CVPR 2022) (x,y,z, 0, ¢) _)'|:||:||:|_> (RGBO')
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Light Field / Radiance Field

* The light field describes the amount of light flowing in every direction through
every point in space at every time point.

* Plenoptic function: L(x,y,z,0,®, A, t).
e Substitute A with RGB, t with different frame.
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leferentlable Rendering

Differentiable Differentiable
physical simulation objective function
y = f(x)

Input parameters

shape & position of objects, materials,
light sources, camera pose, etc.

Update scene rendered image

* What is differentiable rendering?

* Inverse rendering
* Continuously optimize input parameters.

* Compatible with machine learning pipeline.
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Differentiable Rendering

* Work as a soft-delta/soft-min .

e Continuous:
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Positional Encoding

* A mapping that maps input coordinates from low dimensional space to high
dimensional encoding space.

* Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional
Domains. (Tancik et al. NeurlPS 2020

NeRF
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Hash Encoding

* Instant Neural Graphics Primitives with a Multiresolution Hash Encoding.
Muller et al. Siggraph 2022 Best Paper Award
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Sampling Strategies

* Monte Carlo Integral.

* Stratified sampling.

* Importance sampling.

Al Al Aby

Uniform Importance
distribution sampling
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Discussions

* Why NeRF works?

* Positional Encoding (Neural Tangent Kernel Analysis)

* 5D Neural Radiance Fields based on MLP (Neural Representations)
* Volume Rendering (Differentiable Rendering)

* Sampling (Performance Improvement)

* What are the limitations of NeRF?

* Extremely slow for rendering and training

Bad Surface reconstruction
Cannot model reflection and refraction well

Hard to edit the local area
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