Foundation models in computer vision have demonstrated exceptional performance in zero-shot and few-shot tasks by extracting multi-purpose features from large-scale datasets through self-supervised pre-training methods. However, these models often overlook the severe corruption in cryogenic electron microscopy (cryo-EM) images by high-level noises. We introduce DRACO, a Denoising-Reconstruction Autoencoder for CryO-EM, inspired by the Noise2Noise (N2N) approach. By processing cryo-EM movies into odd and even images and treating them as independent noisy observations, we apply a denoising-reconstruction hybrid training scheme. We mask both images to create denoising and reconstruction tasks. For DRACO's pre-training, the quality of the dataset is essential, we hence build a high-quality, diverse dataset from an uncurated public database, including over 270,000 movies or micrographs. After pre-training, DRACO naturally serves as a generalizable cryo-EM image denoiser and a foundation model for various cryo-EM downstream tasks. DRACO demonstrates the best performance in denoising, micrograph curation, and particle picking tasks compared to state-of-the-art baselines. We will release the code, pre-trained models, and the curated dataset to stimulate further research.
@inproceedings{shen2024draco,
title={Draco: Denoising Reconstruction Autoencoder for CryO-EM},
author={Shen, Yingjun and Dai, Haizhao and Chen, Qihe and Zeng, Yan and Zhang, Jiakai and Pei, Yuan and Yu, Jingyi},
booktitle={Proceedings of the 38th International Conference on Neural Information Processing Systems},
year={2024}
}